Decomposable Submodular Function Minimization: Discrete and Continuous

نویسندگان

  • Alina Ene
  • Huy L. Nguyen
  • László A. Végh
چکیده

This paper investigates connections between discrete and continuous approaches for decomposable submodular function minimization. We provide improved running time estimates for the state-of-the-art continuous algorithms for the problem using combinatorial arguments. We also provide a systematic experimental comparison of the two types of methods, based on a clear distinction between level-0 and level-1 algorithms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient Minimization of Decomposable Submodular Functions

Many combinatorial problems arising in machine learning can be reduced to the problem of minimizing a submodular function. Submodular functions are a natural discrete analog of convex functions, and can be minimized in strongly polynomial time. Unfortunately, state-of-the-art algorithms for general submodular minimization are intractable for larger problems. In this paper, we introduce a novel ...

متن کامل

Revisiting Decomposable Submodular Function Minimization with Incidence Relations

We introduce a new approach to decomposable submodular function minimization (DSFM) that exploits incidence relations. Incidence relations describe which variables effectively influence the component functions, and when properly utilized, they allow for improving the convergence rates of DSFM solvers. Our main results include the precise parametrization of the DSFM problem based on incidence re...

متن کامل

On the Convergence Rate of Decomposable Submodular Function Minimization

Submodular functions describe a variety of discrete problems in machine learn-ing, signal processing, and computer vision. However, minimizing submodularfunctions poses a number of algorithmic challenges. Recent work introduced aneasy-to-use, parallelizable algorithm for minimizing submodular functions thatdecompose as the sum of “simple” submodular functions. Empirically, this ...

متن کامل

Reflection methods for user-friendly submodular optimization

Recently, it has become evident that submodularity naturally captures widely occurring concepts in machine learning, signal processing and computer vision. Consequently, there is need for efficient optimization procedures for submodular functions, especially for minimization problems. While general submodular minimization is challenging, we propose a new method that exploits existing decomposab...

متن کامل

Submodular Function Minimization and Maximization in Discrete Convex Analysis

This paper sheds a new light on submodular function minimization and maximization from the viewpoint of discrete convex analysis. L-convex functions and M-concave functions constitute subclasses of submodular functions on an integer interval. Whereas L-convex functions can be minimized efficiently on the basis of submodular (set) function minimization algorithms, M-concave functions are identif...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017